A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to count the total strobogrammatic numbers that exist in the range of low <= num <= high.
This problem is way harder than the previous two. Reference: kamyu104's GitHub.
# Time: O(5^(n/2)) # Space: O(n) class Solution: lookup = {'0':'0', '1':'1', '6':'9', '8':'8', '9':'6'} cache = {} # @param {string} low # @param {string} high # @return {integer} def strobogrammaticInRange(self, low, high): count = self.countStrobogrammaticUntil(high, False) - \ self.countStrobogrammaticUntil(low, False) + \ self.isStrobogrammatic(low) return count if count >= 0 else 0 def countStrobogrammaticUntil(self, num, can_start_with_0): if can_start_with_0 and num in self.cache: return self.cache[num] count = 0 if len(num) == 1: for c in ['0', '1', '8']: if num[0] >= c: count += 1 self.cache[num] = count return count for key, val in self.lookup.iteritems(): if can_start_with_0 or key != '0': if num[0] > key: if len(num) == 2: # num is like "21" count += 1 else: # num is like "201" count += self.countStrobogrammaticUntil('9' * (len(num) - 2), True) elif num[0] == key: if len(num) == 2: # num is like 12". if num[-1] >= val: count += 1 else: if num[-1] >= val: # num is like "102". count += self.countStrobogrammaticUntil(self.getMid(num), True); elif (self.getMid(num) != '0' * (len(num) - 2)): # num is like "110". count += self.countStrobogrammaticUntil(self.getMid(num), True) - \ self.isStrobogrammatic(self.getMid(num)) if not can_start_with_0: # Sum up each length. for i in xrange(len(num) - 1, 0, -1): count += self.countStrobogrammaticByLength(i) else: self.cache[num] = count return count def getMid(self, num): return num[1:len(num) - 1] def countStrobogrammaticByLength(self, n): if n == 1: return 3 elif n == 2: return 4 elif n == 3: return 4 * 3 else: return 5 * self.countStrobogrammaticByLength(n - 2) def isStrobogrammatic(self, num): n = len(num) for i in xrange((n+1) / 2): if num[n-1-i] not in self.lookup or \ num[i] != self.lookup[num[n-1-i]]: return False return True
No comments:
Post a Comment