We can use trie to make the problem simple.
Solution:
# T:O(m*n) S:O(1)
class TrieNode:
# Initialize your data structure here.
def __init__(self):
self.is_string = False
self.leaves = {}
# Inserts a word into the trie.
def insert(self, word):
cur = self
for c in word:
if not c in cur.leaves:
cur.leaves[c] = TrieNode()
cur = cur.leaves[c]
cur.is_string = True
class Solution:
# @param {character[][]} board
# @param {string[]} words
# @return {string[]}
def findWords(self, board, words):
visited = [[False for j in xrange(len(board[0]))] for i in xrange(len(board))]
result = {}
trie = TrieNode()
for word in words:
trie.insert(word)
for i in xrange(len(board)):
for j in xrange(len(board[0])):
if self.findWordsRecu(board, trie, 0, i, j, visited, [], result):
return True
return result.keys()
def findWordsRecu(self, board, trie, cur, i, j, visited, cur_word, result):
if not trie or i < 0 or i >= len(board) or j < 0 or j >= len(board[0]) or visited[i][j]:
return
if board[i][j] not in trie.leaves:
return
cur_word.append(board[i][j])
next_node = trie.leaves[board[i][j]]
if next_node.is_string:
result["".join(cur_word)] = True
visited[i][j] = True
self.findWordsRecu(board, next_node, cur + 1, i + 1, j, visited, cur_word, result)
self.findWordsRecu(board, next_node, cur + 1, i - 1, j, visited, cur_word, result)
self.findWordsRecu(board, next_node, cur + 1, i, j + 1, visited, cur_word, result)
self.findWordsRecu(board, next_node, cur + 1, i, j - 1, visited, cur_word, result)
visited[i][j] = False
cur_word.pop()
Run Time: 840 ms
No comments:
Post a Comment